博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
稀疏傅里叶变换(sparse FFT)
阅读量:6051 次
发布时间:2019-06-20

本文共 2681 字,大约阅读时间需要 8 分钟。

作者:桂。

时间:2018-01-06  14:00:25

链接: 


前言

  对于数字接收来讲,射频域随着带宽的增加,AD、微波、FPGA资源的需求越来越高,但频域开的越宽并不意味着频谱越宽,有限信号内可认为信号在宽开频域稀疏分布,最近较为流行的稀疏FFT(SFFT)是在传统FFT的基础上,利用了信号的稀疏特性,使得计算性能优于FFT。本文简单记录自己的理解。

一、稀疏FFT

主要是12年MIT的论文:Simple and Practical Algorithm for Sparse Fourier Transform。

核心思想:

SFT 作为这样一种“输出感知”算法,其核心思路是按照一定规则 Γ ( • )将信号频点投入到一组“筐”中(数量为 B,通过滤波器实现 ) . 因频域是稀疏的,各大值点将依很高的概率在各自的“筐”中孤立存在 . 将各“筐”中频点叠加,使 N 点长序列转换为 B点的短序列并作 FFT 运算,根据计算结果,忽略所有不含大值点的“筐”,最后根据对应分“筐”规则,设计重构算法 Γ -1 ( • )恢复出 N 点原始信号频谱。

算法流程:

步骤一:选定一个sigma,实现数据频域重排。

频域重排主要是因为FFT之后,频域大值集中在一起,需要将这一伙打散,保证频域的稀疏性(sparse)。打散之后就能稀疏,依据定理(可见n越大,打散的可能性越大,从这里看,sigma与B还是有关系的,sigma体现了相邻频点的最小间隔,而B决定了每个bucket的宽度):

这里是按一定概率(概率性)将频谱重排,MIT重排思路:

对应代码:

fs = 1000;f0 = 70;N = 256;t = [0:N-1]/fs;x = exp(1j*2*pi*t*f0) ;%%*************Step1:频谱随机重排**************sigma = 19; %inv(sigma) = 27tao = 3;%permutationperm_num = mod([1:N]*sigma+tao,N)+1;pn = x(perm_num);

  当然也有强制(确定性)将数据重排的思路,思路类似,只是实现方式不同:

sigma的选择主要利用性质:

这里sigma^-1是sigma关于模N的逆元(数论倒数)。该点主要说明:变化前后的完备性(信号可重建)。

 步骤二:加窗。

 这里根据筐的多少(B),平分2pi频域,即带宽2pi/B,理想窗函数为矩形窗,但时域为无限长的sinc函数,需要加窗截断,可选择gausswin。

即win = sinc.*gausswin:

这里不局限于gausswin,满足给定约束的窗函数均可:

步骤三:频域抽取并作FFT

加窗之后,保证了频谱不至于展宽严重,进一步保证了稀疏性。频域降采样:

等价于时域的混叠的傅里叶变换:

故直接在时域进行处理。处理完成后进行FFT运算。

该操作的理论基础为:

不谈加窗操作,x->p->y,可以看出x与y存在映射关系,而y的∑操作可以转化为并行,这样一来可以用多个低速率AD实现一个高速率AD的功能,前提是多个AD需要完全同步。

与上述降速率思想等价的是:如果各AD可做好同步,则多个现有AD的能力,可以做出现有AD难以完成的事。

步骤四:哈希映射

哈希映射的线索为:最终观察的数据Y(k)【即y(n)】->P(k)【即p(n)】->X(k)【即x(n)】:

第一步(y -> p)转化的理论依据:

第二步(p -> x)转化的理论依据:

序列重排后的频域变换为:

这两步解释了算法step4的参数定义:

但实际中并非第一步提到的理想情况,实际情况是:

因此存在一个频谱重建的成功概率问题:

 4章节的后半部分主要在证明这个概率问题。

步骤五~六的主要目的,引用原文的说法:

  Here are two versions of the inner loop: location loops and estimation loops. Location loops are given a parameter d, and output a set I ⊂ [n] of dkn/B  coordinates that contains each large coefficient with“good” probability. Estimation loops are given a set  I ⊂ [n] and estimate x I such that each coordinate is  estimated well with “good” probability.

 步骤五:定位循环

 d是一个参数,存在约束

原文取值为:

 该步骤的主要操作为:

将 Z ( k )中 dK 个较大值(从大到小依次排列)的坐标( k)归入集合 J 中,通过哈希反映射得到 J 的原像:

这样便得到包含原始频谱坐标的集合,迭代L次:

迭代的目的?

 

步骤六:估值循环

 对于每个k∈Ir,计算频率信息:

步骤5~6主要操作:

至此完成了稀疏FFT(sparse FFT)的整个运算过程,记作sfft_v01。

改进版都是依次大框架进行,不同点主要有三个方面:1)重排的实现思路;2)频谱的重建思路。不再一一展开。 

原文示例

该示例给出了步骤5~6的直观解释:

 

二、问题记录

仿真验证:n = 256点频信号,sigma = 19,则inv_sigma = 27,假设生成点频信号:

图1为重排的信号,图2为重排加窗(此处窗不够理想,看到长尾,论文中强调加窗,作用在于把尾巴剁掉。),图3为原始信号频谱,图4为降采样之后的频谱。可以看出重排容易引入谐波:以sigma为周期。  

原始频谱位置为k=10-1 = 9(下标从0开始),重排后对应频谱位置为mod(sigma*k,n) = 171 = 172-1,与理论分析一致。即原始k点重排后位置:

 即时域信号,x(n),重排序号perm_num = mod([1:n]*sigma,n)+1,则对应重排后的傅里叶变换,频谱顺序与原信号频谱X,经过重排序号perm_num1 =  mod([1:n]*inv_sigma,n)+1,位置始终相差1(数论倒数的性质决定):mod(sigma*inv_sigma,n)=1

转载于:https://www.cnblogs.com/xingshansi/p/8214122.html

你可能感兴趣的文章
自己重新编译VLFeat
查看>>
Scrapy简介
查看>>
在本地计算机无法启动world wide web Publishing 服务或者安装iis5无法启动iis默认网站...
查看>>
c#如何操作excel文件、Interior.ColorIndex 色彩列表
查看>>
百练OJ 1017 2801
查看>>
MySQL5.5 performance_schema的介绍
查看>>
c# 利用反射获得某个类或者对象的所有属性
查看>>
java基础---->正则表达式
查看>>
win8 开发之旅(4) --五子棋游戏开发 面向对象的分析
查看>>
mfc在控制多显示器的使用方法
查看>>
rsync 精确同步文件用法 (转载)
查看>>
【Flume】HDFSSink源码理解
查看>>
Using Container Service to Build WeChat Applets
查看>>
RGB颜色转换算法C语言实现
查看>>
用GOACCESS分析NGINX日志
查看>>
Creating Skins with SkinSys Ver 1.0
查看>>
《VMware Virtual SAN权威指南》一3.3 VSAN网络配置之VMware标准交换机
查看>>
只为那句承诺-大话Promise
查看>>
IaaS市场大整合:云用户喜忧参半
查看>>
Skype-Type:一款通过声音窃取键盘记录的Keylogger工具
查看>>